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Prefacs
o ‘ In this eport, I have attempted to present the reader
with an easily understood report on the evaluation of thrust

coefiicient for clustered nozzles.

e |l A, P -

This thesis represents a summary of various concepts

that I have learned about clustering nozzles. Although a

thesis is important to the research and scientific world, I

feel that my experiences and achievements exceeded the ideas

C L ke

contained within these pages. During this 18 month period,

PR —

I have had the opportunity and pleasure of having a new friend.
As a thesis advisor, Dr. W. C. Elrod has given of himself un-
selfishly. He has always had an ear to lend and has offered

alternative and valuable solutions to various problems both

on the professional and personal level. I have thoroughly
enjoyed working with and having Dr. Elrod as my advisor during
the course of this study.
I wish to acknowledge my love and appreciation to my
é wife, Kothy. Throughout this study, I have tormented her with
{ a sporadic meal schedule, a never ending laundry pile, and a
mind plagued with engineering problems. Yet she endured each

day by handing me a beer and telling me she understood. Also,

a special thanks to our dog Clyde who greeted me each day 1
with a friendly wag. When things didn't go well during the
course of this study, as they often dida't, Clyde would ap-

1
:ﬁ proach with a ball to be thrown or with a leash for a walk
3

!

in the park. Mostly, I thsnk them both for showing me in their
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own way that John Lennon was vight when he said; "All you need
;‘ ; is lovel"

A very special thanks to Dr. P. Torvik for his assist-
ance with the visicorder and instrumentation. Professor Torvik

£ made numerous and valuable suggestions in setting up'and de~

bugging the instrumentation. I thank him for taking a personal

interest in this study.

g Many others have contributed to this study over the

past year. I would like to take the time to thank a few of

gi them now.,

v -Dr, H. Wright and Dr. M. Franke, my thesis committee,
for their suggestions throughout the course of this
study.

7 ~Mr, Shortt and Mr. Brohas, from the fabrication shop,

?l o for their handiwork in developing and building of the
apparatus.

-Mr. Baker and Mr. Cannon, the lab technicians, for
their assistance in the assembling of the appraratus.

-Ms. K. Newman, personal friend, for her assistance

with the viewgraphs.

David V. Hibson
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This is an exXperimental evaluation of the thrust per-
formance of 3 sets of clustered, three-dimensional, conver-

ging-~diverging, cold flow, supersonic nozzlese. A cluster of

2,4, and 6 nozzles were designed and fabricated., Each clus-
ter assembly has the same geometry in that their area ratio,

expansion ratio, and total throat area is the same. A single

nozzle with the same geometry and tctal throat area was used
to evaluate the creditability of the testing procedure and the
performance of the 3 sets of clustered nozzles. The thrust

performance of each nozzle cluster was evaluated by comparison

i
1
i
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of the measured thrust coefficient of the cluster to that of a
single nozzle, The nozzle with the highest thrust coefficient

was the cluster of 2 nozzles. Its performance was closely

e L o e

followed by the cluster of 4 nozzles. The nozzle with the

lowest thrust coefficient was the cluster of 6 nozzles. The

results of this study irdicate that the clustering of nozzles

o SRR L ek

improves the thrust performance.
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PERFORMANCE CHARACTERISTICS OF CLUSTERED NCZZLLS

. I. Iptroduction

The concept of clustering arrays of rocket engines is

] not new. In the early 60's nozzles were clustered in order f
z; to capitalize on the altitude compensating characteristics of ;
- , plug nozzles. Recent work has been aimed at achieving high :

vacuum specific impulse by clustering existing rocket engines

to for very high area ratio engines. A specific application

AT -,

now being considered at AFRPL, Edwards AFB, Califorwuia, is the
clustering of existing modules such as the RL-10 02/H2 engine.

. Mo information is presently available on the performance of

Coo Suah ¢ ol aor e bt e oo ek awme o

clustered nozzles of this type at the high pressure ratios
characteristic of these rocket engines (ref 6).
The odvject of this thesis wuo.
1. To design, fabricate, and calibrate the necessary
apparatus and instrumentation in order to determine

the thrust coefficient for siugle and clustered

nozzles,

ey o sl Sahe - it S

A 2. To experimentally determine the thrust performance
and stability of operation of 3 sets of clustered,
?E three-dimensional, converging-diverging, cold flow,
; supersonic nozzles.

This is an experimental study in model scale. In this
study, a clustered nozzle assembiy is considered to be 2 or

more nozzles that are held together and have equivalent
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throat areas. Determination of the relative thrust efficiency

e e o i e et s

{‘ of each nozzle set was accomplished by comparison of its thrust j

coefficient to that of a single nozzle whose throat area was

-l o S

S

the same as that of the total throat area of the set.
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IT. Theory

An objective of this study was to investigate exper-
imentally the thruast performance of clustered nozzles in
model scale., The thrust performance of each nozzle cluster
was evaluated by comparing it to a standard single nozzle
by comparing their respective measured thrust coefficient.
The thrust ccefficient determines '"the amplification of
tarust due to the gas expansion in the rocket nozzle as
compared to the thrust that would be exerted if the chaumber
pressure acted over the throat area only" (ref 5). Thrust

coefficient may be defined as:

T
Co = 7™
f Atp1

By use of conservation momentum, the thrust is equal

to (ref 5):
T = ﬁlva + (PZ - P3>A2

"The thrust is composed of two terms., The first term,
the momentum thrust,is the product of the gas (propellant)
mass flow rate and the exhaust velocity relative to the noz-
zle (vehicle). The second term, the pressure thrust, con-
sists of the product of the cross-sectional area of the ex~
haust jet leaving the nozzle and the difference between the

exhaust pressure and the fluid pressure., If the exhaust pre-
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sure is less than the surrounding fluid pressure, the pressure
thrust is negative" (ref 5). This condition is known as
overexpansion and is uniesirable due to the loss in thrust.

An underexpanding nozzle discharges the gas at a pressure
greater than the ambient pressure. In this case, the nozzle exit,
area is too small. A nozzle with optimum expansion is when
the nozzle exit pressure is equal to the ambient pressure. At

this condition, the thrust, and therefore the thrust coefficient
also, is at a maximum,

The effect of either overexpansion or underexpansion
is a slight reduction in the exhaust velocity and, therefore,
a loss in energy. The loss of thrust due to overexpansion and
underexpansion may be determined from the thrust coefficient.
This theory assumes that the nozzle is flowing full (i.e.

Py 2 O.4p3) and that the pressure thrust is positive for
underexpansion and negative for ovefexpans;on. For unaer-
eXpansion and for.slight overexpansion, this simple theory is
in accgrate agreement with measured results.

A sample calculation may be found in Appendix C. The

‘sample calculation gives rise to the desired guantities to be

measured. kKnowing the desired quantities, the first objective,

design, fabricate, and check the apparatus, was then achieved.
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I1I. Apparatus

The purpose of the apparatus was to provicdzs a means
to obtain the necessary data to cdetermine the thrust cueffi-
cient for fhe nozzle clusters. The theory section indicated
the various quantities needed to be measured (i.e. pressure,
temperature, thrust). From this, the first objective, to de-
sign znd build an apparatus, was completed.

The experimental apparatus consisted of a nozzle clus-
ter assembly, stilling chamber, mass flow meter, visicorder,
and various regulating valves and hardware, Descriptions of
eacn and its use in this study are given below. A schematic
is shown in Fig. 1. Further details and drawings may be found
in Appendix B.
Nozzle Cluste ssembl

The nozzles were designed and then fabricated from aluminum
stock (Fig 3). The nozzles were desiyned using one-dimensional
isentropic relations (ref 2) for a pressure ratio of g% = 0.,04711
(Me = 2.64). Each nozzle inlet was designed using a constant
arc of radius 1.837 i 0.001 in (ref 3).

The 3 sets of nozzle clusters were designed with the
same total throat area. A cluster of 2, 4, and 6 nozzles were
assembleds The cluster arrangements are shown in Fig 4.
Fach nozzle was machined separately and then fastened to an
aluminum base plate. Clay was used to seal the seamlines be-
tween the nozzles. For control purposes (see test proucedure

section), a single nozzle with the same geometry and total
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i throat area was made. Also, a spare nozzle from each cluster XE
; assembly was fabricated. This made a total of 7 nozzles, that 2§
% is 3 cluster nozzle assemblies, a large single nozzle, and 3 'E
f more single nozzles from each cluster. ‘ ;
F Stilling Chamber ‘f
? The nozzle base plate fastened directly to the stilling 15
g chamber. The chamber provided a reservoir of compressed air. 5;
s Within the stilling chamber, a basket-type diffuser (Fig B-1)

disseminated the incoming gas in a radial direction to the
stilling chamber., The nozzles were tested at a chamber pressure

; of 150, 200, 250, 300, and 350 psig.

CLTRTTEARE PN RS

The stilling chamber pivoted via its 5 ft long feed
line as shown in Fig 2. At the pivot point, the inner slotted

tube diffused the gas in a radial direction before the gas

entered the feed line. Bearings and O-rings were used to re=-

duce friction and provide a proper seal (Fig B-2). Strain

) it il . : el e kR -

gages mounted on an aluminum beam were used to measure the

thrust created by the nozzle assembly (Fig 2). A pressure

3 transducer and a thermocouple measured the pressure and ten-
i
| perature of the gas respectively.

Mass _Flow Meter

i'; A thin-plate square edge orifice meter, built and in-

i stalled according to ASME standards, was located just prior

? to the stilling chamber assembly (Fig 1l). The mass flow meter
was designed using the enefsy equation (ref 1) for a diameter
ratio of B = % (Fig B-3). Two pressure transducers and a

thermocouple measured the pressure and temperature of the gas.
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Visicorder

A Honeywell visicorder, model 1508, was used to re-
cord all data. The voltage outputs from the various pressyre
tranducers, thermocouples, and thrust measuring device were
each wired independently to one of the 8 channels to the vi-
sicorder. Of the 8 channels used, the thrust data was record-
ed on 1 of 5 channels. The tirust measuring channel was
selected according to the nozzle being tested (see test pro~
cedure).
Regulatipng Valves and Hardware

A Grove regulatihg valve was used to adjust the pres-
suie above the diaphram in the dome regulator. The dome regu-
lator then adjusted the air pressure from the supply line
pressure to the desired operating pressure. Air was supplied
from a nearby trailer unit.

After the apparstus was completed, the instrumentation

was calibrated and test procedures were established as des-

cribed next,

11
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IV. Test Procedure

With the experimental apparatus assembled, the last
part of objective l, to calibrate the instrumentation and
to provide a test procedure for the apparatus, was compieted.
Nozzles 1 thru 4 were used as a standard to calibrate and
de-bug the system. A description of how the mass flow meter,
thrust measuring device, pressure transducers and thermo-
couples, and visicorder were calibrated are given below.
Mass Flow Meter

The mass flow meter was designed and installed according
to ASME standards (ref 1). No direct calibration was required.
Various equations and charts (see ref 1 and appendix C) were
used to determine the mass flow rate., As a check, isentropic
conditions were assumed at the nozzle throat to determine a
second calculation of mass flow rate. The 2 mass flow rates
were used in the results section.

rust Measuri Device

The thrust measuring device was an aluminum beam with
mounted strain gages as shown in Fig 2. The thrust is
measured along the centerline of the stilling chamber and the
nozzle., This design restricted the movement of the stilling
chamber to 5/32 in and thereby reduced unnecessary friction
from the O=-ring assembly at the pivot point. To further

reduce this effect, the stilling chamber was vibrated during
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the data collecting period. This method reduced friction

effects to a minimum,

e | e B S

A similar problem was enccuntered during the calibra=- ?

N
24
e

i

i

A

F‘
i

;
£
§
g,

tion of the thrust measuring device.i,Weights were suspended -
from the device via a basket, cable and pulley assembly

(Fig 2)« Again the stilling chamber was vibrated to reduce

Lo ERRTIITTER L

frictional effects from the pulley assembly.

This study does not concern itself with the exact ef=-

procedures on the data. Nozzle 1 was tested to indicate i
ﬁ the hysterisis effects were indeed negligible (Fig A-1l), A

%
fects of the friction incurred from the calibration and test ;
correlation factor was found for the thrust data taken and ;

O At S VI SHRDVO SR PUSTRPOS R L S TP R Y g

indicated that the data was linear. Knowing that the mea-
sured thrust data obtained is linear, hysterisis from fric-
tional effects was assumed negligible in the testing procedure.

Pressure Trapsducers and Thermocouples

Pressure transducers were calibrated by use of a dead ’;

i weight tester. Two iron vs constantan thermoucouples were
used to measure the gas temperature. They were calibrated by

inserting the thermocouple bead into a water bath with a

thermometer, heating it, and recording the visicorder read-

ing and the thermometer reading.

Visicorder

All measuring devices fed their voltage outputs directly

PRSPPI WL T SR

to the visiéorder. The visicorder recorded all inputs on a

CIRLILSR NN WPV
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light sensitive graph paver. All data was recorded with-
in the 20 cm width of paper. 1In order to provide the proper
resolution, the thrust measuring device was required to i

record an 3 separate channels. One channel for thrust 0 =

35 lbf, another for 25-85 lbf, and the third for 4O =~
150 lbf provided the data to be resolved to within 2.0%
of its recorded value.

All inputs to the visicorder, with the exception of

!
.
;.
3
¥
3

t ihe thermocouples, used a variable vesistor as indicated in
Q Fig B=4. The variable resistor provided 2 useful functions,
@ FPirst, i1 permitted the entire recording space to be used,
An example of this is the pressure transducer for the stilling
chamber. Tests were made between 150 - 350 psig. There-
fore, the 1 cm rark was the 150 psig point and the 19 cm
mar.i: was the 350 psig pnint. This permitted the best at=-
tainable resolution in the recorded data and also kept the
galvanoﬁeter well within its linear range. Second, the var-
iable resister permitted an easy method to calibrate the
readingé from day to day. An example of this would be to
place a 15 lbf on the thrust measuring device. The variable
resistor could then be adjusted, if necessary, o locate the
light beam at the prcper point. In addition, the variable
resistor did not change the sensitivity of the galvanometer,
Procedure

A nozzle assembly was selected and fastened to the

13




rear of the stilling chamber (Fig 2). The Grove regulator

was then adjusted to increment the gas pressure in the stil-
ling chamber from 150 - 350 psig and back to 150 psig in 50
psig increments. The appafatus was vibrafed to reduce’
frictional effects., Tiails method produced data with a high
degree of repeatability as the results section indicates

next,
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V. Results and Discussion

The apparatus was designed, fabricated, and checked
out with the testing of nozzle 1, The single nozzle thrust
performance was compared to theory (Fig A-11l) in order to
establish a base line. A statistical package within the
AFIT computer system was used to fit the best curve to the
measured and theoretical data. A iinear curve was fitted
to the measured thrust data points. A correlation factor
of 09996 indicated that the line fitted to these points was
nearly an ideal fit. Knowing that the measured data points
were linear, it was assumed that any hysterisis effects
encountered in the calibration procedures would have little
effect in the data collecting procedures. From the thrust
measurements, the thrust coefficient was determined (Fig A-4).
Various statistical packages within the computer system were
used to fit polynomial curves to the data. DNozzle 1 estab-
lished a baseline upon which the 3 nozzle cluster sets and
their respective staadards were evaluated,

A typical graph of the thrust coefficient vs pressure
ratio is shown in Fig 5. Graphs of all measurements may be
found in Appendix 4. A sample calculation with an error
analysis may be found in Appendix C. Table I shows the order
of best performing nozzles at optimum expansion, Pr= 21413,
The equations derived by the computer may be found at the
end of Appendix A., The theory curve in Fig 5, and A-1 thru

A=3 was found by using the theoretical data points for all

15
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the nozzles in that particular graph. This resulted in
slightly different equation (due to 0.7% difference in At)
as shown in Table A=2.
is Clyster Sets w Si g Nozzle

A comparison of the 3 cluster nozzle sets with a sin-
gle nozzle of equivalent throat area is shown in Fig S.
Trom the calculations in appendix C, the optimum expansion
point is at Pr= 2113, A pressure ratio less than 21.13
operates the nozzle at an overexpanded condition while
pressure ratios greater than 21.13 operate the nozzle at
an underexpanded condition. DNozzle 2-2 has a l.6% increase
in thrust compared to the single nozzle at Pr= 21.13,
Similarly, nozzle 3~4 has a 1l.0% increase in thrust. Nozzle
4-6 was slightly less than the single nozzle by =0.2%. Over=-
all, for all pressure ratios, nozzle 2-2 was the best performer.
Compardsopn of Nozzle 2-2 with Nozzle 2

Nozzle 2-~2 is compared with nozzle 2 in Fig A-1l, At
a P= 21,13, nozzle 2-2 has a 2.2% increase in thrust over

nozzle 2. For all pressure ratios, nozzle 2-2 out performs

nozzle 2.
Compardson of Nozzle 3-4 with Nozzle 3

The results of noszle 3-4 and nozzle 3 are shown in
FMig A-2, DNozzle 3~L4 is the best performer. At Pr= 21,13,

nozzle 3-4 has a 0.7% increase in thrust over nozzle 3.

-
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shown in Tig A-3.
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nozzles are tabulated in Table I.
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A graph of the results for nozzle 4-6 and nozzle 4 is
Here, nozzle 4-6 out performs nozzle 4

until a pressure ratio of about 15 is reached, and then the
single nozzle 4 performs better than nozzle 4-6,

expansion, nozzle 4 has a 0.7% increase in thrust over nozzle

! The results for nozzle 1 are plotted in Fig A-4.

Pr= 21.13, it is within 3.3% of theoretical results.
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VI. Conclusions

The apparatus and instrumentation was designed,
fabricated and check out by the author. From the results
section and the error analysis in Appendix C, the data
obtained from this study has a high degree of repeatability.
The error analysis indicated that the data points should

. b e e kR L - o -

have a spread of * 2,0%. The actual data points are con-

JRS——

tained well within these boundaries, From this, the fol-

e

lowing conclusion may be drawn:
fw 1. The apparatus is suitable for determining the
“ thrust coefficient for single and clustered nozzles. !
A single nozzle was tested and evaluated in order to
create a baseline. The 3 sets of clustered nozzles were then
compared to the single nozzle. Tollowing this, the 3 nozzle
sets and their respective standard nozzles were evaluated.
After analyzing the results, the following conclusion may
be drawn:
2. The thrust performance does vary with each of the
different nozzle configurations. This study suggests that
there is a relationship between.the number and arrangement
of the nozzle exhausts and the free stream flow such that
their interaction influences the pressure thrust term in the

thrust equation. This study indicates that clustering of

Bl IR -
' [ U P, - - .

nozzles improves thrust performance.

o VPSR O CTEITHTTY L T

19

e TR T s

. . T B A A TN AT A TIl
o R T e 0 LT P




VII. Recommepdations

The recommendations arising out of the course of this

study are:

l. Further study of clustered nozzles should be
performed to examine the effect of shrouding between the
nozzles to improve the performance of the 4 and 6 nozzle

cluster.

2o Additional study of clustered nozzles of non-

convensional shape (i.e. rectangular, oval, etc.) and in

various configurations could be completed to provide a

data base for future design work. i
i 3, Continue this study using higher pressure ratios. 1
b
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Table A=
Nozzle
2=2
314
-
¥
!.
E:
' 4-6
![.
!
1
EI 1
|
gl
|
# 4
]
3
E
g

Nozzle Equations Derived by Computer for Fig A-1

thry A-17 and vut jnto Text,

a(2)PR® +  a(1)PR b
~0.0006  0.0329 0.9662
-0,0004  0.0236 1.0260
6e1s5 12,86
6.38 -12.,93
~0.0006  0.0331 0.9633
~0,0007  0.0366 €.9103
6ulily ~12.72
6.28 12,24
-~0,0006  0.0323 0.9738
-0,0006  0.0319 0.9346
GalsS ~12.71
6,23 12,18
-0.0007 0,037 0.9325
-0,0006  0.0318 0.9291
6451 13,39
6434 ~13.48
40
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Table 1 aued
Nozzle Ng = a(2)PR2 + a(1)PR + b ;
2 Cf -0.,0006 0.0329 0.9662 j

t 3057 -6064

Rt Seaglent S RAC i S At SIS A 7 2 =
R O R M o e R h M L R Sl ar.
. - - t - B AR

Ty 3429 ~7.09
3 C. -0,0006 0.,0338 Ce9607 ‘;

Cf ~0.0007 0.0345 O0.9242

) Tt 1061 -3019

TR ST RS T RS R T ML
(o)
ot

T, | 1.55 -2.85

B e T T P
e thind coemE e ez o <t S

! 4 Ce, -0.0006  0.0325 049572 ;i
; Cs -0.0008 0.0410 0.8496 B
| E
{ T, 1011 -2.18 f
3 f
g: T, 1.08 -2.18 ;
!
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a(2)PRC +
-0..0007
"Oo 0005

"O & 0006

=0,00086

a(1)PR
0.0351
0.0298
0.0318
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Appendix C




Sample Calculation

2l 'l

The thrust coefficient determines the amplification

—

of thrust due to the gas expansion in the rocket nozzle as
compared to the thrust that would be exerted if the chamber

pressure acted over the throat area only (ref 5). The basic

oA ik e

definition of thrust coefficient is:

£ Atp1

i, AN Ol

et SR NI

where: T = thrust (lbf)
Lo A

1}

t throat area (ina)

Py

chamber pressure (psia)

Thrust coefficient is a non~dimensional term that is
E used in this study to compare the thrust performance among
the 7 nozzles tested., The measured thrust coefficient was

found by measuring the thrust, throat area and chamber pres-

sure directly. To determine the theoretical thrust coefficient,

more extensive calculations were carried out. To obtain the

the theoretical thrust, Sutton (ref 5) used conservation of

z
]
“i momentum to find:

ﬁVé
T=-§:+(P2‘P3>A2

R AT A R T SRl
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where: T

thrust (lbf)

Be
n

mass flow rate (lbm/s)
V, = exit velocity of gas (fps)
£t 1b_/s°

]
o
:
{
4
3
b

g, = 32.174 lbf
3 P, = pressure at exit plane of nozzle (psia)
é P3 = ambient pressure (psia) H
; A, = nozzle exit area (ina)
b
% AZ can be measured directly from the nozzle itself and

) . P3 is the varometric pressure during the testing period. V/2
and'p2 are found using isentropic relations from ref 2. The
mass flow rate (m) can be determined from two methods.
M d : 535 Tlow e

The following equations were obhtained from ref 1 (p58)

and were derived from the energy equation.

T.473" d = 0,7357"
a/D = 0,500
Ko = 045993 + 0.,007/D + (0.36L4 + 0,076 D)

g
1]

™
]

Ke = 0.6308

B ST

A = d(830 - 50008 + 90008° - 420067 + 530/4D")
A = 362.59
K, = K (a*10%/(a*10% + 154))

Rl e > oo ouiis B% P, sl

b e

o

KO = Oo 6262

3 2Nt N
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0
]
3
"

—

—— e v = an

K = c/4 (1 -,AE)= Ko (1 + A/Ry) |
Ry = L8/ G d ) : E
where: @ = 1.37 lbm/s (assumed) |

A= 1.19925 107 1b /ft s }
_ 6
Ry = 2.3 10

XK = 0.6262

then:

m = "74*d2*K*JJ(2gC/%(pa - pb5T

Pa = p,/(z R T,)

= compressibility factor ;

= 0.99 @ p, = 350 psia T, =70F |

R = gas constant i

= 55.35 1b, £t/(R 1b) %

substituting: '
o= 0.28954 (p,/T,) (P, = Py) 1b,/s

where: z

where: p, = pressure before orifice (psia)

Py, = pressure after orifice (psia)

Ta

(]

temperature of gas (R)

51




Method II : Isentropjc Flow

Q” for choked flow M = 1
3 ref 2 Tt = 0,8333 T,
v

1.0

8 8y = AE¥RTy

Py = P/ (RTy)

=
o
@
H
@
2

‘-'.
]

? ' where: R = 53,35 lbf ft/(R lbm)

g substituting:

m = 0.522 (py A/Tq) 1b,/s

w

where: p, = chamber pressure (psia)

4
E
T1 = chamber temperature (R) )
;
At = throat area (inz) .
' A
)
A i
‘: C igui with the thrust eguation: i
gfl V2 = M2 a i
FA where: M2 = exit mach number ;
F a = 4\[ R g RT2 fps
V
g
r 52
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b

from ref 2:
AMAY = 3,000
' then:

substituting:

85,1562 4&? fps

V2=

The ambient pressure, pB, is measured in Hg. To convert

to psia: ®

p3=P

given area ratio

T

5= T (0s418275) R
M2 - 2-637
P, = py (0.047329) psia
K = 1.4
lb, ft
B, = 324174 S
l‘bf 3

R = 53.35 lbf £t/(R lbm)

where: T1 = chamber temperature R

, (0.4898) psia

A2 is measured directly from the nozzle exit.

A2 = '“'/Lq.*da in

2

The exit areas were as follows:

1

2
3
L

0.8882759 in°

0.462L008 in® 2-2
0.2206246 in® 3ol
0.1520122 in® L4-6

53

0.8835211 in°
0.8824986 in®
0.8835729 in®
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The thrust can now be calculated for an assumed Py and

T]. It is assumed that the temperature measurement is reason-

] ably correct and can be used for the theoretical calcula-~
tion. Temperafure of the gas was measured in degree F. \'hen

: converted to absolute temperature and the square root is
§ taken, a temperature uncertainty of + 1.,0F has little effect
% in the theoretical calculation.
% Also it should be noted that optimum expansion takes
é place when bo = p3. This occurs when:
E
: 11;% = 1/0.047329
’i or P, = 21,129

! The theoretical and measured thrust coefficients can

# now be determined:

i

L T T
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Lrro lysis

|
i
|
|
%

In measuring the data, the visicorder could give

the following resolutions in its recordings:

py = 150 £ 1.25 psig

T =10 + 0.175 lbf for nozzles 3 & 4
= 35 + 0.28 1lb, for nozzle 2
= 60 + 0,59 1lb, for nozzles 1, 2-2, 3=-4, & 4-6
i
f,
E In measuring the throat areas, the diameters could
E- be measured to within + 0.0001 in. \
i :
: A, = 0.0507 + 0,00016 in® for nozzle 4 {
- = 0.1541 + 0,00028 in® for nozzle 2 ‘%
| = 0.2961 + 0,00037 in® for nozzle I !
b
%l
N T
o Given: Co = ==
5 £ Ay 1
| |
! |
; then: C 1
FR aT  Agpy ‘
1 |
@ 1
3 i
{‘ |
|
| |
% 22 <
|
g 1
I *
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IR VL

3C, T
Py Ay -

o - 3C¢ 2 3C ¢ 2 aCy 5

¢, =2 | rtelBiy? ¢ (IiLas)
q 150 O 0507 O 0507*150

+ (

]
10%0, 00016 )2] fe
150%0,0507%

éq = 0,026

Therefcre: C. = C

I+

0.026 for nozzle 3 & 4

Similarly: Cf = Cf 0.018 for nozzle 2

1+

I+

0.017?  for nozzle 1, 2-2, 3-%,
&

From this error analysis, a region within each data
point may be drawn to indicate a region of uncertainty. All
of the data points for each graph were used in order to fit
the best curve. In comparing the data point's region of un-
certainty tc its vicinity to the curve, the data points indi-

a high degree of repeatability from which trends may be shown
in the nozzle's thrust performance,

-
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